Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Perioper Med (Lond) ; 13(1): 3, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245800

RESUMEN

BACKGROUND: Ambulatory surgery is often followed by the development of nausea and/or vomiting (N/V). Although risk factors for postoperative nausea and vomiting (PONV) are frequently discussed, the distinction between PONV and postdischarge nausea and vomiting (PDNV) is unclear. This is especially troublesome given the potential consequences of postdischarge nausea and vomiting (PDNV), which include major discomfort and hospital readmission. METHODS: In this retrospective cohort study, data from 10,231 adult patients undergoing ambulatory ophthalmology or otolaryngology procedures with general anesthesia were collected and analyzed. Binary and multinomial logistic regression was used to assess the association between patient and anesthetic characteristics (including age, body mass index (BMI), American Society of Anesthesiologists Physical Status (ASA P/S) classification, current smoker status, and intra- and postoperative opioid usage) and the odds ratios of experiencing only PDNV, only PONV, or both PONV and PDNV, as compared to not experiencing N/V at all. RESULTS: We found that 17.8% of all patients developed N/V (PONV and/or PDNV). Patients who experienced PONV had a 2.79 (95% confidence interval 2.24-3.46) times greater risk of reporting PDNV. Binary logistic regression found that younger age, opioid use, and female sex were associated with an increased likelihood of experiencing any N/V. Increased use of nitrous oxide and a higher ASA P/S class was associated with elevated likelihood of PONV, but not PDNV or PONV plus PDNV. CONCLUSIONS: Patients experiencing N/V in the PACU are observed to develop PDNV disproportionately by a factor of 2.79. The patients have distinct predictors, indicating important opportunities for care improvements beyond current guidelines.

2.
Bioresour Technol ; 395: 130348, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242241

RESUMEN

Pyrite-based constructed wetlands (CWs) stimulated nitrate removal performance at low carbon to nitrogen (C/N) ratio has been gaining widely attention. However, the combined effects of pyrite and C/N on the nitrate removal mechanisms and greenhouse gases (GHGs) reduction were ignored. This study found that pyrite-based CWs significantly enhanced nitrate removal in C/N of 0, 1.5 and 3 by effectively driving autotrophic denitrification with high abundance of autotrophs denitrifiers (Rhodanobacter) and nitrate reductase (EC 1.7.7.2), while the enhancement was weakened in C/N of 6 by combined effect of mixotrophic denitrification and dissimilatory nitrate reduction to ammonium (DNRA) with high abundance of organic carbon-degrading bacteria (Stenotrophobacter) and DNRA-related nitrite reductase genes (nrf). Moreover, pyrite addition significantly reduced GHGs emissions from CWs in all stages with the occurrence of iron-coupled autotrophic denitrification. The study shed light on the potential mechanism for pyrite-based CWs for treating low C/N ratio wastewater.


Asunto(s)
Compuestos de Amonio , Sulfuros , Aguas Residuales , Humedales , Desnitrificación , Nitratos , Nitrógeno , Carbono , Hierro
3.
Mater Horiz ; 11(1): 238-250, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37909216

RESUMEN

Ionogels have the advantages of thermal stability, non-volatility, ionic conductivity and environmental friendliness, and they can be used in the field of flexible electronics and soft robotics. However, their poor mechanical strength and complex preparation methods limit their practical application. Herein, we propose a simple strategy to improve the performance of ionogels by adjusting their phase separation behavior. In a polymer-ionic liquid (IL) binary system with an upper critical solution temperature (UCST) and Berghmans' point, the phase separation behavior will be frozen below the temperature corresponding to the Berghmans' point, and thus, the degree of phase separation can be adjusted by controlling the cooling rate. We found that a polyacrylamide (PAM)-IL binary system possessed a UCST and Berghmans' point and the resulting ionogels had excellent mechanical properties. Their tensile strength, tensile modulus, compressive strength and compressive modulus reached 31.1 MPa, 319.8 MPa, 122 MPa and 1.7 GPa, respectively, while these properties of the other ionogels were generally less than 10 MPa. Furthermore, they were highly transparent, stretchable, stable and multifunctional.

4.
Front Plant Sci ; 14: 1259516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790795

RESUMEN

It is very important to promote plant growth and decrease the nitrogen leaching in soil, to improve nitrogen (N) utilization efficiency. In this experiment, we designed a new fertilization strategy, fruit tree hole storage brick (FTHSB) application under subsurface drip irrigation, to characterise the effects of FTHSB addition on N absorption and utilization in grapes. Three treatments were set in this study, including subsurface drip irrigation (CK) control, fruit tree hole storage brick A (T1) treatment, and fruit tree hole storage brick B (T2) treatment. Results showed that the pore number and size of FTHSB A were significantly higher than FTHSB B. Compared with CK, T1 and T2 treatments significantly increased the biomass of different organs of grape, N utilization and 15N content in the roots, stems and leaves, along with more prominent promotion at T1 treatment. When the soil depth was 15-30 cm, the FTHSB application significantly increased the soil 15N content. But when the soil depth was 30-45 cm, it reduced the soil 15N content greatly. T1 and T2 treatments obviously increased the activities of nitrite reductase (NR) and glutamine synthetase (GS) in grape leaves, also the urease activity(UR) in 30 cm of soil. Our findings suggest that FTHSB promoted plant N utilization by reducing N loss in soil and increasing the enzyme activity related to nitrogen metabolism. In addition, this study showed that FTHSB A application was more effective than FTHSB B in improving nitrogen utilization in grapes.

5.
Water Res ; 246: 120750, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866244

RESUMEN

Plant development greatly influences the composition structure and functions of microbial community in constructed wetlands (CWs) via plant root activities. However, our knowledge of the effect of plant development on microbial nitrogen (N) cycle is poorly understood. Here, we investigated the N removal performance and microbial structure in subsurface flow CWs at three time points corresponding to distinct stages of plant development: seedling, mature and wilting. Overall, the water parameters were profoundly affected by plant development with the increased root activities including radial oxygen loss (ROL) and root exudates (REs). The removal efficiency of NH4+-N was significantly highest at the mature stage (p < 0.01), while the removal performance of NO3--N at the seedling stage. The highest relative abundances of nitrification- and anammox-related microbes (Nitrospira, Nitrosomonas, and Candidatus Brocadia, etc.) and functional genes (Amo, Hdh, and Hzs) were observed in CWs at the mature stage, which can be attributed to the enhanced intensity of ROL, creating micro-habitat with high DO concentration. On the other hand, the highest relative abundances of denitrification- and DNRA-related microbes (Petrimonas, Geobacter, and Pseudomonas, etc.) and functional genes (Nxr, Nir, and Nar, etc.) were observed in CWs at the seedling and wilting stages, which can be explained by the absence of ROL and biological denitrification inhibitor derived from REs. Results give insights into microbial N cycle in CWs with different stages of plant development. More importantly, a potential solution for intensified N removal via the combination of practical operation and natural regulation is proposed.


Asunto(s)
Microbiota , Humedales , Desnitrificación , Ciclo del Nitrógeno , Nitrógeno , Desarrollo de la Planta , Eliminación de Residuos Líquidos/métodos
6.
Plant Commun ; 4(6): 100682, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37691288

RESUMEN

Sporopollenin in the pollen cell wall protects male gametophytes from stresses. Phenylpropanoid derivatives, including guaiacyl (G) lignin units, are known to be structural components of sporopollenin, but the exact composition of sporopollenin remains to be fully resolved. We analyzed the phenylpropanoid derivatives in sporopollenin from maize and Arabidopsis by thioacidolysis coupled with nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The NMR and GC-MS results confirmed the presence of p-hydroxyphenyl (H), G, and syringyl (S) lignin units in sporopollenin from maize and Arabidopsis. Strikingly, H units account for the majority of lignin monomers in sporopollenin from these species. We next performed a genome-wide association study to explore the genetic basis of maize sporopollenin composition and identified a vesicle-associated membrane protein (ZmVAMP726) that is strongly associated with lignin monomer composition of maize sporopollenin. Genetic manipulation of VAMP726 affected not only lignin monomer composition in sporopollenin but also pollen resistance to heat and UV radiation in maize and Arabidopsis, indicating that VAMP726 is functionally conserved in monocot and dicot plants. Our work provides new insight into the lignin monomers that serve as structural components of sporopollenin and characterizes VAMP726, which affects sporopollenin composition and stress resistance in pollen.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Calor , Lignina/química , Lignina/genética , Lignina/metabolismo , Polen/genética , Polen/metabolismo , Rayos Ultravioleta , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Water Res ; 243: 120277, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37441899

RESUMEN

Nitrogen (N) removal in constructed wetlands (CWs) was often challenged by limited denitrification due to the lack of carbon source, and wetland plants would be more important in carbon (C) and N cycling in CWs with influent of low carbon to nitrogen (C/N) ratio. In this study, the underlying mechanisms of nitrate nitrogen (NO3--N) removal under different low C/N ratios were revealed by constructing microcosm CWs, and the unplanted group was set as the control to explore the role of plants in N removal. The results showed that plants and the concentration of influent carbon significantly affected NO3--N and total nitrogen (TN) removal (p < 0.05). The presence of plants significantly increased the concentration of DO and wetland plant-derived DOM (p < 0.05). The enhanced NO3--N and TN removal with increased C/N ratio attributed to high denitrification activity reflected in the abundance of denitrification microbes and genes. However, the contribution of partial denitrification-anammox (PDN/AMX) to N removal in CWs decreased from more than 75.3% at the C/N ratio of 0 to 70.4% and 22.3% with the C/N ratio increased to 1.5 and 3, respectively. Furthermore, the PDN/AMX process was negatively correlated with favorable oxygen environment in the planted group and plants roots carbon secretion, but the overall N removal efficiency of the CWs was enhanced by increased abundance of N removal-related functional genes in the presence of plants. Abovementioned results provided new insights to explain the mechanism of N removal in CWs under low C/N ratio.


Asunto(s)
Desnitrificación , Aguas Residuales , Humedales , Oxidación Anaeróbica del Amoníaco , Nitrógeno , Carbono , Plantas , Eliminación de Residuos Líquidos
8.
Artículo en Inglés | MEDLINE | ID: mdl-36882929

RESUMEN

Solar energy, as renewable energy, has paid extensive attention for solar thermal utilization due to its unique characteristics such as rich resources, easy access, clean, and pollution-free. Among them, solar thermal utilization is the most extensive one. Nanofluid-based direct absorption solar collectors (DASCs), as an important alternative method, can further improve the solar thermal efficiency. Notably, the stability of photothermal conversion materials and flowing media is critical to the performance of DASC. Herein, we first proposed novel Ti3C2Tx-IL-based nanofluids by the electrostatic interaction, which consists of functional Ti3C2Tx modified with PDA and PEI as a photothermal conversion material and ionic liquid with low viscosity as the flow medium. Ti3C2Tx-IL-based nanofluids exhibit excellent cycle stability, wide spectrum, and efficient solar energy absorption performance. Besides, Ti3C2Tx-IL-based nanofluids maintain liquid state in a range of -80 to 200 °C, and its viscosity was as low as 0.3 Pa·s at 0 °C. Moreover, the equilibrium temperature of Ti3C2Tx@PDA-IL at a very low mass fraction of 0.04% reached 73.9 °C under 1 Sun, indicating an excellent photothermal conversion performance. Furthermore, the application of nanofluids in photosensitive inks has been preliminarily explored, which is expected to play a role in the fields of injectable biomedical materials and photo/electric double-generation thermal and hydrophobic anti ice coatings.

9.
ACS Appl Mater Interfaces ; 14(42): 48106-48122, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36240508

RESUMEN

Limited durability and complex materials restrict the application of superhydrophobic fabrics in daily life. In this work, gellable fluorinated block copolymer poly(dodecafluoroheptyl methacrylate)-block-poly(3-(triethoxysilyl)propyl methacrylate) (PDFMA-b-PTEPM) was used to fabricate adhesive-free superhydrophobic poly(ethylene terephthalate) (PET) fabrics via a simple dip-coating technology and sol-gel reaction. The growth of silica nanoparticles builds up a rough hierarchical structure and provides sol-gel reaction sites of PTEPM segments. The grafting of block copolymer significantly reduced the surface free energy of the fabrics, resulting in an excellent superhydrophobicity with a water contact angle of 160.2°. Benefiting from extensive chemical bond grafting and cross-linking of the PTEPM segment, the fabric exhibits excellent durability in mechanical abrasion, chemical treatment, and washing. The coating has withstood 50 sandpaper abrasion cycles and 400 soft friction cycles and can maintain superhydrophobic properties in various solvents, freezing and a wide pH range. These superhydrophobic fabrics with a long life span possess self-cleaning, anti-icing, oil-water separation, and self-healing capabilities. The multifunctional fabrics developed in this study are durable and easy to produce, possessing the potential for applications in industry and daily life.

10.
Biomater Adv ; 141: 213116, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36115155

RESUMEN

Inflammation resolution plays a significant role in attenuating bone injury aggravated by acute inflammation and maintaining bone homeostasis. Maresin 1 (MaR1), a specialized pro-resolving mediators (SPMs), is biosynthesised in macrophages (Mφs) that regulates acute inflammation. Strategies to accelerate the resolution of inflammation in bone repair include not only promoting vanish of acute inflammation, also improving osteogenic microenvironment. Here, previously prepared difunctional demineralized bone matrix (DBM) scaffold was used to study thoroughly the "cross-talk" between Mφs lipid metabolism and mesenchymal stem cells (MSCs) behaviors in vitro. The pro-resolving mechanism in Mφs treated with MaR1 was elaborated. Furthermore, the biological behaviors of MSCs in co-culture system were evaluated. The results indicated that MaR1 had an enhanced capability and performance in peroxisome proliferator-activated receptor-γ (PPAR-γ) activation, M2-type Mφs polarization, and lipid droplets (LDs) biogenesis in Mφs in vitro. The nuclear receptor PPAR-γ enhanced the anti-inflammatory proteins expression and the polarization of Mφs toward M2 subtype, thereby favoring the proliferation, migration, and osteogenesis of MSCs. Overall, the results verified that MaR1 facilitated MSCs behaviors by regulating PPAR-γ-mediated inflammatory response, which implied that PPAR-γ exhibited a significant role in the dialogue between MSCs behaviors and Mφs lipid metabolism.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Antiinflamatorios/metabolismo , Ácidos Docosahexaenoicos , Humanos , Inflamación/metabolismo , Macrófagos , PPAR gamma/metabolismo
11.
Biomater Adv ; 139: 213036, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35905556

RESUMEN

The dialogue between host macrophages (Mφs) and endogenous mesenchymal stem cells (MSCs) promotes M2 Mφs polarization to resolve early-stage inflammation, thereby effectively guiding in situ bone regeneration. Once inflammation is unresolved/incontrollable, it will induce the impediment of MSCs homing at bone defect site, implying the seasonable resolution of inflammation in balancing bone homeostasis. Repeatedly, evidence elucidated that specialized pro-resolving mediators (SPMs) could conduce to proper resolve inflammation and promote the repairing of bone defect. A difunctional demineralized bone matrix (DBM) scaffold co-modified by maresin 1 (MaR1) and aptamer 19S (Apt19S) was fabricated to facilitate the osteogenesis of MSCs. To confirm the osteogenesis and immunomodulatory role of the difunctional DBM scaffold, the proliferation, recruitment, and osteogenic differentiation of MSCs and the Mφs M2 subtype polarization were evaluated in vitro. Then, the DBM scaffolds were implanted into mice model with critical size calvarial defect to evaluate bone repair efficiency. Finally, the specific resolution mechanism in Mφs cultured on the difunctional DBM scaffold was further in-depth investigated. This difunctional DBM scaffold exhibited an enhanced function on the recruitment, proliferation, migration, osteogenesis of MSCs and the resolution of inflammation, finally improved bone-scaffold integration. At the same time, MaR1 modified on the difunctional DBM scaffold increased the biosynthesis of 12-lipoxygenase (12-LOX) and 12S-hydroxy-eicosatetraenoic acid (12S-HETE), and also directly stimulated lipid droplets (LDs) biogenesis in Mφs, which suggested that MaR1 regulated Mφ lipid metabolism at bone repair site. Findings based on this synergy strategy demonstrated that Mφ lipid metabolism was essential in bone homeostasis, which might provide a theoretical direction for the treatment-associated application of MaR1 in inflammatory bone disease.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Matriz Ósea , Inflamación/metabolismo , Ratones , Andamios del Tejido
12.
ACS Omega ; 7(25): 21664-21674, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35785329

RESUMEN

Despite many important industrial applications, epoxy resin (EP) suffers from high flammability and toxicity emission, extremely hampering their applications. To circumvent the problem, core-shell structured ZIF67@ZIF8 is successfully synthesized and further functionalized with phytic acid (PA) to obtain PA-ZIF67@ZIF8 hybrids. Then, it is used as an efficient flame retardant to reduce the fire risk of EP. The fire test results show a significant reduction in heat and smoke production. Compared with EP, incorporating 5.0 wt % PA-ZIF67@ZIF8 into EP, the peak heat release rate, total heat release, and peak carbon monoxide production are dramatically reduced by 42.2, 33.0, and 41.5%, respectively. Moreover, the EP/PA-ZIF67@ZIF8 composites achieve the UL-94 V-0 rating and the limiting oxygen index increases by 29.3%. These superior fire safety properties are mainly attributed to the excellent dispersion and the catalytic effect of metal oxide and phosphorus-containing compounds. This work provides an efficient strategy for preparing a promising ZIF-based flame retardant for enhancing flame retardancy and smoke toxicity suppression of EP.

13.
ACS Appl Mater Interfaces ; 14(19): 22544-22553, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35511465

RESUMEN

The performance of graphene aerogels (GAs) is based on the microstructure. However, GAs face a challenge of simultaneously controlling the size and alignment of pores strategically. Herein, we initially proposed a simple strategy to construct GAs with an adjustable structure based on the emulsion and ice dual template methods. Specifically, GAs with a honeycomb structure prepared by conventional freezing (CGAs) exhibited a high specific surface of 176 m2/g, superelasticity with a compressive strain of 95%, isotropic compression and thermal insulation performances, as well as an excellent absorption capacity of 150-550 g/g. Instead, the GAs with a bamboo-like network frozen by unidirectional freezing (UGAs) showed anisotropy in compression and thermal insulation behavior. Furthermore, UGAs exhibited incredible special stress (7.9 kPa cm3/mg) along the axial direction twice than that of the radial direction. Meanwhile, the apparent temperature of UGAs was only 45.6 °C when placed on a 120 °C hot stage along the radial direction. Remarkably, the properties of CGAs and UGAs were significantly improved with the adjustment of the microstructure.

14.
Environ Res ; 212(Pt C): 113453, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35537498

RESUMEN

Nitrate and sulfate are crucial factors of eutrophication and black and odorous water in the surface water and thus have raised increasing environmental concerns. Constructed wetlands (CWs) are the last ecological barrier before effluent enters the natural water body. To explore the simultaneous removal of nitrate and sulfate, the CW microcosms of CW-Con (with quartz sand), CW-ZVI (quartz sand and zero-valent iron), CW-Mag (quartz sand and magnetite), CW-ZVI + Mag (quartz sand, ZVI and magnetite) groups were set up under the low (100 mg/L)/high (300 mg/L) chemical oxygen demand (COD) concentration. Under the high COD condition, CW-ZVI group showed the best performance in nitrate (97.1%) and sulfate (96.9%) removal. Under the low COD concentration, the removal content of nitrate and sulfate in CW-ZVI group was better than CW-Mag group. The reason for this result was that zero-valent iron (ZVI) could be the electron donor for nitrate and sulfate reduction. Meanwhile, ZVI promoted chemical denitrification under high COD concentration according to PCA analysis. In addition, the produced sulfides inhibited the relative abundance of denitrifying bacteria, resulting in the lowest nitrate removal rate in CW-Mag group with sufficient electron donors. This study provided an alternative method to enhance simultaneous sulfate and nitrate removal in CWs.


Asunto(s)
Nitratos , Humedales , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Óxido Ferrosoférrico , Hierro/química , Óxidos de Nitrógeno , Cuarzo , Arena , Sulfatos , Eliminación de Residuos Líquidos/métodos , Agua
16.
J Alzheimers Dis ; 85(3): 1053-1061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34924389

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a fatal neurodegenerative disease, the etiology of which is unclear. Previous studies have suggested that some viruses are neurotropic and associated with AD. OBJECTIVE: By using bioinformatics analysis, we investigated the potential association between viral infection and AD. METHODS: A total of 5,066 differentially expressed genes (DEGs) in the temporal cortex between AD and control samples were identified. These DEGs were then examined via weighted gene co-expression network analysis (WGCNA) and clustered into modules of genes with similar expression patterns. Of identified modules, module turquoise had the highest correlation with AD. The module turquoise was further characterized using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis. RESULTS: Our results showed that the KEGG pathways of the module turquoise were mainly associated with viral infection signaling, specifically Herpes simplex virus, Human papillomavirus, and Epstein-Barr virus infections. A total of 126 genes were enriched in viral infection signaling pathways. In addition, based on values of module membership and gene significance, a total of 508 genes within the module were selected for further analysis. By intersecting these 508 genes with those 126 genes enriched in viral infection pathways, we identified 4 hub genes that were associated with both viral infection and AD: TLR2, COL1A2, NOTCH3, and ZNF132. CONCLUSION: Through bioinformatics analysis, we demonstrated a potential link between viral infection and AD. These findings may provide a platform to further our understanding of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Biología Computacional , Perfilación de la Expresión Génica , Virosis/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/virología , Bases de Datos Genéticas , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Transducción de Señal/genética
17.
ACS Appl Mater Interfaces ; 13(45): 53541-53552, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34726373

RESUMEN

Torealize intelligent and personalized medicine, it is a huge challenge to develop a hydrogel dressing that can be used as a sensor to monitor human health in real-time while promoting wound healing. Herein, an injectable, self-healing, and conductive chitosan-based (CPT) hydrogel with pH responsiveness and intrinsic antibacterial properties was fabricated via a Schiff base linkage and a hydrogen bond. Due to the introduction of Schiff base bonds, the injectable CPT hydrogel exhibits various excellent properties, such as pH responsiveness to sol-gel transition, self-healing properties, and broad-spectrum antibacterial properties even without additional antibacterial agents. In vitro experiments verify the excellent biocompatibility of the as-prepared hydrogel. An in vivo experiment in a mouse full-thickness skin-wound model was performed to confirm the outstanding effect on wound healing. Meanwhile, as epidermal sensors, the conductive hydrogel that perceives various human activities in real-time could provide the real-time analysis of the patient's healthcare information. Based on these excellent properties, the CPT hydrogel, as a biological dressing with a sensing function, lays a solid foundation for the further realization of personalized medicine.


Asunto(s)
Antibacterianos/farmacología , Quitosano/farmacología , Escherichia coli/efectos de los fármacos , Hidrogeles/farmacología , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quitosano/síntesis química , Quitosano/química , Conductividad Eléctrica , Epidermis , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Concentración de Iones de Hidrógeno , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tamaño de la Partícula
18.
Mater Sci Eng C Mater Biol Appl ; 128: 112359, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474906

RESUMEN

Lipid metabolism in macrophages has been increasingly emphasized in exerting an anti-inflammatory effect and accelerating fracture healing. 12-lipoxygenase (12-LOX) is expressed in several cell types, including macrophages, and oxidizes polyunsaturated fatty acids (PUFAs) to generate both pro- and anti-inflammatory lipid mediators, of which the n-3 PUFAs play an important part in tissue homeostasis/fibrosis. Although mechanical factor regulates the lipid metabolic axis of inflammatory cells, specifically matrix stiffness influences macrophages metabolic responses, little is known about how matrix stiffness affects the 12-LOX-mediated early inflammation in bone repair. In the present study, demineralized bone matrix (DBM) scaffolds with different matrix stiffness were constructed by controlling the duration of decalcification (0 h (control), 1 h (high), 12 h (medium), and 5 d (low)) to repair the defected rat skull. The expression of inflammatory cytokines and macrophages polarization were analyzed. The lipid metabolites and lipid mediators' biosynthesis by matrix stiffness-regulated were further detected. The results showed that the low matrix stiffness could polarize macrophages into an anti-inflammatory phenotype, promote the expression of anti-inflammatory cytokines and specialized pro-resolving lipid mediators (SPMs) biosynthesis beneficial for the osteogenesis of mesenchymal stem cells (MSCs). After treated with ML355, the expression of anti-inflammatory cytokines/proteins and SPMs biosynthesis in macrophages cultured on low-matrix stiffness scaffolds were repressed, and there were almost no statistical differences among all groups. Findings from this study support that matrix stiffness regulates bone repair by modulating 12-LOX-mediated early inflammation, which suggest a direct mechanical impact of matrix stiffness on macrophages lipid metabolism and provide a new insight into the clinical application of SPMs for bone regeneration.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Células Madre Mesenquimatosas , Animales , Regeneración Ósea , Inflamación , Osteogénesis , Ratas
19.
Biomater Sci ; 9(17): 5884-5896, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34286727

RESUMEN

As a bioelectronic material used in personalized medicine, it is necessary to integrate excellent adhesion and stretchability in hydrogels for ensuring biosafety. Herein, a high-performance multifunctional hydrogel of polyvinyl alcohol-sodium alginate-g-dopamine-silver nanowire-borax (PSAB) is reported. It can not only easily adhere to the surface of various substrates, but also exhibit excellent mechanical properties. Its tensile strength, elongation at break and toughness are 0.286 MPa, 500% and 55.15 MJ m-3, respectively. The excellent mechanical properties and high conductivity guarantee that the PSAB hydrogel can successfully serve as a multifunctional sensor for detecting small activities and large-scale movements of the human body through strain and pressure changes. Meanwhile, the long-lasting potent and broad-spectrum antibacterial activity, combined with good in vitro biocompatibility, guarantees the biological safety and non-toxicity of the PSAB hydrogel. These compelling features, such as high flexibility and elasticity, high adhesion, multi-functional sensing and recyclability, as well as biological safety, pave the way for the application of PSAB hydrogel e-skin in biomedicine.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Adhesivos , Contención de Riesgos Biológicos , Conductividad Eléctrica , Humanos , Cementos de Resina
20.
ACS Appl Mater Interfaces ; 13(2): 2600-2609, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33403847

RESUMEN

Porous liquids (PLs), an emerging kind of liquid materials with permanent porosity, have attracted increasing attention in gas capture. However, directly turning metal-organic frameworks (MOFs) into PLs via a covalent linkage surface engineering strategy has not been reported. Additionally, challenges including reducing the cost and simplifying the preparation process are daunting. Herein, we proposed a general method to transform Universitetet i Oslo (UiO)-66-OH MOFs into PLs by surface engineering with organosilane (OS) and oligomer species via covalent bonding linkage. The oligomer species endow UiO-66-OH with superior fluidity at room temperature. Meanwhile, the resulting PLs showed great potential in both CO2 adsorption and CO2/N2 selective separation. The residual porosity of PLs was verified by diverse characterizations and molecular simulations. Besides, CO2 selective capture sites were determined by grand canonical Monte Carlo (GCMC) simulation. Furthermore, the universality of the covalent linkage surface engineering strategy was confirmed using different classes of oligomer species and another MOF (ZIF-8-bearing amino groups). Notably, this strategy can be extended to construct other PLs by taking advantages of the rich library of oligomer species, thus making PLs promising candidates for further applications in energy and environment-related fields, such as gas capture, separation, and catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...